# imports
from EEG_Familiarity import preproc
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
import matplotlib.pyplot as plt
Projection Example
Generating projection of the LDA classifiers based on the specified class.
# multiple group
= "../data/data_CRMN_vs_MMN_imbalLDA_order_proj_1.mat"
file_path
= preproc(file_path, experiment_num=1)
data_preproc = data_preproc.filter_index(2,5,2,4)
pos1, neg1 = data_preproc.filter_index(4,5,4,4)
pos2, neg2
= data_preproc.merge_two_class(pos1, neg1, pos2, neg2)
pos_idx, neg_idx = data_preproc.get_data_by_index(pos_idx, neg_idx)
X, y, subject
= LinearDiscriminantAnalysis(shrinkage=None, solver="eigen")
LDA
= [10, 11]
pos_idx = [8, 9]
neg_idx
=True) data_preproc.generate_projections(LDA, pos_idx, neg_idx, X, y, subject, balance
AttributeError: module 'matplotlib.pyplot' has no attribute 'set_xticks'
# multiple group
= "../../../EEG-Familiarity-Prediction/data_imbalLDA_1.mat"
file_path
= preproc(file_path, experiment_num=1)
data_preproc = data_preproc.filter_index(2,5,2,4)
pos1, neg1 = data_preproc.filter_index(4,5,4,4)
pos2, neg2
= data_preproc.merge_two_class(pos1, neg1, pos2, neg2)
pos_idx, neg_idx = data_preproc.get_data_by_index(pos_idx, neg_idx)
X, y, subject
= LinearDiscriminantAnalysis(shrinkage=None, solver="eigen")
LDA
= [10, 11]
pos_idx = [8, 9]
neg_idx
= plt.subplots(5,2, figsize=(15, 25))
fig, axs = axs.flatten()
axs
for _ in range(10):
=True, plt=axs[_]) data_preproc.generate_projections(LDA, pos_idx, neg_idx, X, y, subject, balance